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Abstract: In clinical trials with multiple visits, dropouts often occur and the popula-

tion of patients who dropped out may be different from the population of patients

who completed the study. To assess treatment effects over the population of all

randomized patients, which is called the intention-to-treat analysis and is required

by regulatory agencies, last observation analysis (LOAN) focuses on the last obser-

vation of each patient prior to dropout. As a type of LOAN, the last observation

carry-forward (LOCF) method treats the last observation prior to dropout as the

missing observation at the end of the trial and applies standard tests designed

for the case of no dropout. Regulatory agencies such as the U.S. Food and Drug

Administration (FDA) have expressed concerns about the validity of the LOCF

methods. In this paper we study the validity of LOAN and LOCF tests under an

analysis of covariance model, which includes the analysis of variance model as a

special case. In situations where LOAN is relevant, we provide explicit conditions

under which LOCF tests are asymptotically valid and we derive asymptotically

valid tests when LOCF tests are invalid.

Key words and phrases: Dropout, intention-to-treat analysis, last observation carry-

forward, balanced design, balanced covariates.

1. Introduction

In clinical trials, data are often collected over multiple visits of participating

patients, and statistical analyses focus on observations at the end of the study or

change-of-efficacy measurements from baseline to the end of the trial. Despite a

thoughtful and well-designed study protocol, it is frequently the case in a clinical

trial that patients drop out prior to the end of the study. In the presence of

dropout, many regulatory agencies require the intention-to-treat analysis that

focuses on all randomized patients with at least one post-treatment evaluation.

An approach focusing on the last observed visit has received some attention

recently, the so-called last observation analysis (LOAN). Let µit be the ith treat-

ment population mean of the last response y (the primary variable of interest)

of a patient who dropped out after visit t, where i = 1, . . . , I, t = 1, . . . , T , and

visit T is the end of the study so that µiT is the mean of completers. (Note that
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µit is typically different from the ith treatment population mean of y at visit t

in the case of no dropout.) The LOAN evaluates treatment effects by comparing

the µit, t = 1, . . . , T , i = 1, . . . , I. The oldest LOAN is called last observation

carry forward (LOCF), an imputation method that imputes the missing response

at the end of the study by using the response at the visit prior to dropout. Once

this carry forward imputation is done, one applies standard statistical tests that

treat all observations (imputed or not) as responses at the end of the study (Ting

(2000)). Although the LOCF has a long history of application, there has been

concern that treating carried-forward data as observed data creates biases in sta-

tistical tests for treatment effects (Heyting, Tolboom and Essers (1992), Lavori

(1992), Dawson (1994a) and Ting (2000)). A second type of LOAN defines the

overall treatment effect as a weighted average of D1, . . . , DT , where, for each

t, Dt is a measure assessing the difference among µit, . . . , µIt (see, for example,

Dawson and Lagakos (1993), Dawson (1994) and Shih and Quan (1998)). A

key assumption here is that the missing patterns among different treatments are

almost the same (i.e., p1t = · · · = pIt for each t, where pit is the population

proportion of patients dropping out after visit t under treatment i), but this is

not realistic in many applications. The most recent LOAN proposed in Shao

and Zhong (2003) assess treatment effects by comparing the weighted averages

µi =
∑

t pitµit, i = 1, . . . , I, which are unbiasedly estimated by the sample means

based on LOCF data.

Note that the interpretation of treatment effects in the LOAN is very different

from that in the approach of comparing treatment effects at the end of the

study (in the presence of dropout). In some practical applications, using µi’s

in the comparison of treatment effects makes sense (e.g., dropout is caused by

death), whereas in some situations comparing effects at the end of the study

is more reasonable. When dropout is present and depends on y (observed and

unobserved), however, treatment effects at the end of the study (even if they are

not hypothetical) may not be estimable unless a strong (typically nonverifiable)

assumption is imposed on the dropout mechanism and/or the y-population. For

example, the treatment effects at the end of the study may be confounded with

other effects when patients switch to other medications after dropout. Hence,

analysis of the µi’s may be used if there is no other more reasonable approach.

The purpose of this paper is to study methods for inference on µ1, . . . , µI ,

assuming that the µi’s can be used to interpret treatment effects. We adopt the

pattern-mixture approach (Little (1993)), which requires very few assumptions

about the dropout mechanism.

Although the sample means based on LOCF data estimate the µi’s, the

LOCF tests may not be correct. There is a belief that the size of a LOCF test

may be substantially higher or lower than the nominal size α unless µi1, . . . , µiT
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are the same. However, Shao and Zhong (2003) showed that, in one-way ANOVA

with two treatments and a balanced design (i.e., the designed sample sizes of

treatment groups are the same), the asymptotic size of the LOCF test is still

the nominal size α when the null hypothesis is the equality of µi’s, regardless of

whether µi1, . . . , µiT are the same or not. It is also shown in Shao and Zhong

(2003) that the asymptotic size of the LOCF test is not α when the design

is not balanced or more than two treatments are compared. An explanation

for these results is that, based on LOCF data, the mean sum of squares for

treatment (MSTR) in the one-way ANOVA table is asymptotically distributed

as a weighted average of I − 1 independent chi-square random variables, where I

is the number of treatments; when I = 2, the MSTR is asymptotically distributed

as a scaled chi-square random variable; when the design is balanced, this scale is

exactly the same as the limit of the mean sum of squares for error (MSE), which

ensures the asymptotic validity of the LOCF test; if either I ≥ 3 or the design is

not balanced, the ratio MSTR/MSE is asymptotically distributed as a weighted

average of chi-square random variables (not a chi-square random variable) and,

thus, the size of the LOCF test is wrong.

Since a LOCF test is often used in clinical trials, it is important to know when

it is (asymptotically) valid and, in the case where the LOCF test is not valid, what

is a valid testing procedure. The result in Shao and Zhong (2003) only applies to

one-way ANOVA. In clinical trials, an analysis of covariance (ANCOVA) is often

used to incorporate covariates such as the baseline observations. Also, many

clinical trials are multicenter trials, which leads to a two-way (or K-way; K ≥ 3)

ANOVA or ANCOVA.

For a better understanding of the problem, we start with the one-way AN-

COVA in Section 2. Our result shows that in order to have an asymptotically

valid LOCF test, not only the designed sample sizes of the two treatment groups

need to be the same, but also the covariates in the model need to satisfy a bal-

ance condition. More precisely, the covariates in two different treatment groups

need to have either the same average or the same variability. Furthermore, we

derive a test that is always asymptotically valid and can be used to replace the

LOCF test when it is asymptotically invalid. In Section 3, we focus on testing the

interaction effect in a two-way ANOVA model (without covariates). Our results

show that the LOCF test is valid only in some very special situations. A similar

conclusion can be drawn for a two-way ANCOVA model. An asymptotically valid

test for interaction under a two-way ANCOVA model is derived. Based on the

results in Section 3, we consider tests for the main effect (treatment effect) in a

two-way additive ANCOVA model in Section 4. The result in one-way ANCOVA

is extended to this model. Extensions of our results to general K-way ANCOVA

are straightforward. Finally, some simulation results are presented in Section 5.
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2. One-Way ANCOVA

Consider a clinical trial consisting of I treatments, ni patients randomized to
treatment group i, and T scheduled post-baseline visits for each patient. Suppose
that under treatment i, nit patients drop out after visit t. Hence, ni1+· · ·+niT =
ni and (ni1, . . . , niT ) has the multinomial(ni, pi1, . . . , piT ) distribution, where pit

is the population proportion of patients dropping out after visit t under treatment
i. We assume a pattern-mixture one-way ANCOVA model, i.e., for patients who
drop out after visit t, their last observed responses yitk’s are independent with
means µit + b′zitk, where k = 1, . . . , nit, t = 1, . . . , T , i = 1, . . . , I, the µit’s
are unknown fixed treatment effects, zitk is a q-vector of covariates observed for
each patient, and b is a q-vector of unknown parameters. Unlike the y-response
variable, the z-covariate for a patient does not vary with t, although we use
the notation zitk to specify it. No other condition is imposed on the dropout
mechanism (i.e., dropout may be nonignorable).

When there is no dropout, testing for treatment effect may be carried out
by using responses from the end of the study and the method of ANCOVA.
When there are dropouts, as we discussed in Section 1, the LOAN considers the
hypothesis

H0 : µ1 = · · · = µI , (1)

where µi = pi1µi1 + · · · + piT µiT .
The LOCF test is the ANCOVA test that treats yitk as the observation at

the end of the trial. Since µit usually changes with t, one wonders what the
LOCF tests for. If (1) is the hypothesis of interest, there is the question of
validity of the LOCF test. The following result shows when the LOCF test is
asymptotically valid for (1). Since Shao and Zhong (2003) showed that when
I ≥ 3, the LOCF test is asymptotically wrong for testing (1) in a one-way
ANOVA without covariates, we only consider the case of I = 2 treatments.

In this paper, χ2
d denotes the chi-square distribution with d degree of freedom,

while χ2
d,α and Fl,m,α denote, respectively, the 1 − α quantiles of χ2

d and the F-
distribution with degrees of freedom l and m, where α is a given nominal level.
Let

MSTR =
[

(ȳ1.. − b̂
′

z̄1..) − (ȳ2.. − b̂
′

z̄2..)
]2
/ 2
∑

i=1

T
∑

t=1

nit
∑

k=1

a2
itk,

MSE =
1

n1 + n2 − q − 2

2
∑

i=1

T
∑

t=1

nit
∑

k=1

[

(yitk − ȳi..) − b̂
′

(zitk − z̄i..)
]2

,

where zitk is the covariate value associated with yitk, ȳi.. and z̄i.. are, respectively,
the averages of yitk and zitk over the indexes t and k,

b̂ = (Z̃
′

Z̃)−1
2
∑

i=1

T
∑

t=1

nit
∑

k=1

(yitk − ȳi..)(zitk − z̄i..),
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Z̃ is the (n1 + n2) × q matrix whose first n1 rows are z′111 − z̄′1.., . . . , z
′

11n11
−

z̄′1.., . . . , z
′

1Tn1T
− z̄′1.. and whose last n2 rows are z′211 − z̄′2.., . . . , z

′

21n21
− z̄′2.., . . .,

z′2Tn2T
− z̄′2.., and aitk = n−1

i + (−1)i(z̄1.. − z̄2..)
′(Z̃

′

Z̃)−1(zitk − z̄i..).

Theorem 1. Assume I = 2 and, for patients dropping out after visit t, the yitk’s

are independent with means µit + b′zitk and variance σ2 > 0.

(i) The ANCOVA test based on LOCF rejects (1) when the ratio F =MSTR/MSE

is larger than F1,n1+n2−q−2,α.

(ii) As ni → ∞, i = 1, 2, MSE →p σ2 + η, where →p denotes convergence in

probability, with

η = lim
n1τ

2
1 + n2τ

2
2

n1 + n2
(2)

and τ2
i =

∑T
t=1 pit(µit − µi)

2.

(iii)Under (1), as ni → ∞, i = 1, 2, MSTR →d (σ2 + ζ)χ2
1, where →d denotes

convergence in distribution, and

ζ = lim
w1τ

2
1 + w2τ

2
2

w1 + w2
, (3)

wi =
T
∑

t=1

nit
∑

k=1

a2
itk =

1

ni

+ (z̄1.. − z̄2..)
′(Z̃

′

Z̃)−1Si(Z̃
′

Z̃)−1(z̄1.. − z̄2..), (4)

with Si =
∑T

t=1

∑nit

k=1(zitk − z̄i..)(zitk − z̄i..)
′.

The proof of Theorem 1(i) is based on the formula (B) in Searle (1987, p.425).

It is straightforward and therefore omitted. The proofs for Theorem 1(ii) and

(iii) are given in the Appendix.

It follows from Theorem 1 that the LOCF test is asymptotically valid for

testing (1) if and only if η = ζ. Examining (2) and (3), we find that the LOCF

test is asymptotically valid if either τ 2
1 and τ2

2 are asymptotically the same, or

n1/(n1 + n2) and w1/(w1 + w2) are asymptotically the same. The only practical

situation in which τ 2
1 and τ2

2 are asymptotically the same is when τ 2
1 = τ2

2 = 0,

which corresponds to the case of µit = µiT for all t. Hence, if µit’s for a given i

are different, the asymptotic validity of the LOCF test depends on the condition

lim
n1

n1 + n2
= lim

w1

w1 + w2
. (5)

We find that two practical situations in which (5) holds are

lim
n1

n2
= 1 and lim(z̄1.. − z̄2..) = 0, (6)

lim
n1

n2
= 1 and lim

(

S1

n1
−

S2

n2

)

= 0. (7)
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That is, the LOCF test is asymptotically valid for testing (1) when (6) or (7)
holds. Note that Shao and Zhong (2003) showed that the condition lim(n1/n2) =
1 ensures the asymptotic validity of the LOCF test in one-way ANOVA. When
there are covariates, our result shows that in addition to the balance condition
limn1/n2 = 1, the validity of the LOCF test requires the covariates to be bal-
anced in the sense that either the means of the covariates under two treatments
are asymptotically the same (condition (6)) or the covariance matrices of the
covariates under two treatments are asymptotically the same (condition (7)).

When there are I ≥ 3 treatments or the design is not balanced, the LOCF
test has the wrong asymptotic size for testing (1). An asymptotically valid test of

(1) is derived as follows. For the ith treatment, let b̂i =(Z̃
′

iZ̃i)
−1
∑T

t=1

∑nit

k=1zitkyitk,
where Z̃i is the ni×q matrix whose ni rows are z′i11−z̄′i.., . . . , z

′

i1ni1
−z̄′i.., ...., z

′

iTniT

−z̄′i.., and let uitk = yitk − b̂
′

izitk. Then ūi.. = n−1
i

∑T
t=1

∑nit

k=1 uitk is unbiased for
µi and asymptotically normal, and its variance can be estimated consistently by

V̂i =
1

ni(ni − 1)

T
∑

t=1

nit
∑

k=1

(uitk − ūi..)
2.

Theorem 2. Suppose that, for patients dropping out after visit t, the yitk’s are
independent with means µit+b′zitk and variances σ2

it > 0. Under (1), as ni → ∞

for all i, W →d χ2
I−1, where

W =

I
∑

i=1

1

V̂i

(

ūi.. −

∑I
i=1 ūi../V̂i
∑I

i=1 1/V̂i

)2

.

Consequently, an asymptotic size α test rejects (1) if and only if W > χ2
I−1,α.

Note that we do not assume the variances of yitk’s are equal in Theorem 2.
When (1) is rejected, we can make inference (such as pairwise or multiple

comparison on µi’s) using the asymptotic results based on ūi.. and V̂i.

3. Tests for Interaction in Two-Way Models

Two-way ANOVA or ANCOVA is often used in clinical trials. In addition
to the treatment effect, a common factor in a two way ANOVA or ANCOVA is
the center effect in a multicenter trial. Consider a clinical trial carried out in
J centers with I treatments, nij patients randomized to treatment group i at
center j, and T scheduled visits for each patient. The total number of patients
is n =

∑I
i=1

∑J
j=1 nij. Suppose that under treatment i at center j, nijt patients

drop out after visit t. Then (nij1, . . . , nijT ) has the multinomial(nij , pij1, ..., pijT )
distribution, where pijt is the population proportion of patients dropping out
after visit t under treatment i at center j. Let yijtk be the last observed response
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variable of interest from patient k under treatment i at center j who dropped

out after the tth visit.

Under the two-way ANOVA model, for patients dropping out after visit t,

we assume that yijtk’s are independent with means µijt. Similar to the one-way

case, we use the

µij =

T
∑

t=1

pijtµijt (8)

as measures for treatment and center effects. Under two-way models, the µi and

µit of previous sections should be replaced by µij and µijt, respectively. Consider

the decomposition

µij = µ + αi + βj + γij,

where µ is an overall mean, αi’s are fixed treatment effects (α1+· · ·+αI = 0), βj ’s

are fixed center effects (β1 + · · · + βJ = 0), and γij ’s are fixed interaction effects

(γi1 + · · · + γiJ = γ1j + · · · + γIj = 0 for any i and j). Although the treatment

effects αi’s are of primary interest, the analysis in two-way ANOVA often starts

with a test for the treatment-by-center interaction with the null hypothesis

H0 : γij = 0, for all i and j. (9)

To test (9), the LOCF test treats yijtk as the observation in the end of the trial

and rejects H0 when MSAB/MSE > F(I−1)(J−1),n−IJ,α, where

MSAB =
1

(I − 1)(J − 1)
ȳ′L(L′ΛL)−1L′ȳ,

MSE =
1

n − IJ

I
∑

i=1

J
∑

j=1

T
∑

t=1

nijt
∑

k=1

(yijtk − ȳij..)
2,

ȳij.. is the average of yijtk’s over t and k, ȳ = (ȳ11.., . . . , ȳI1.., . . . , ȳ1J.., . . . , ȳIJ..)
′,

Λ = diag(n−1
11 , . . . , n−1

I1 , ..., n−1
1J , . . . , n−1

IJ ),

L =

(

1′

(J−1)

−I(J−1)

)

⊗

(

1′

(I−1)

−I(I−1)

)

,

1m is the m-vector of ones, Im is the identity matrix of order m, and ⊗ is the

Kronecker product. The following result shows what this tests for, and when it

is asymptotically valid. The proof can be found in Cheng (2004).

Theorem 3. Assume that, for patients dropping out after visit t, yijtk’s are

independent with means µijt and variance σ2 > 0.
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(i) As nij → ∞ for all i, j, MSE →p σ2 + η, where

η = lim
1

n

I
∑

i=1

J
∑

j=1

nijτ
2
ij and τ2

ij =

T
∑

t=1

pijt(µijt − µij)
2.

(ii) Under (9), MSAB converges in distribution to a linear combination of (I −

1)(J − 1) independent chi-square random variables with 1 degree of freedom.
The LOCF test for interaction is asymptotically valid (i.e., MSAB/MSE is
asymptotically distributed as χ2

(I−1)(J−1)) if and only if

L′VL = ηL′ΛL, (10)

where V = diag(n−1
11 τ2

11, . . . , n
−1
I1 τ2

I1, . . . , n
−1
1J τ2

1J , . . . , n−1
IJ τ2

IJ).
(iii)When I = J = 2, (10) becomes

lim

∑2
i=1

∑2
j=1 nijτ

2
ij

∑2
i=1

∑2
j=1 nij

= lim

∑2
i=1

∑2
j=1 n−1

ij τ2
ij

∑2
i=1

∑2
j=1 n−1

ij

. (11)

When I = 2 and J ≥ 3, (10) becomes

n−1
1j τ2

1j + n−1
2j τ2

2j

n−1
1j + n−1

2j

=

∑2
i=1

∑J
j=1 nijτ

2
ij

∑2
i=1

∑J
j=1 nij

, for all j. (12)

When I ≥ 3 and J = 2, (10) becomes

n−1
i1 τ2

i1 + n−1
i2 τ2

i2

n−1
i1 + n−1

i2

=

∑I
i=1

∑2
j=1 nijτ

2
ij

∑I
i=1

∑2
j=1 nij

, for all i. (13)

When I ≥ 3 and J ≥ 3, (10) becomes

τ2
ij = constant. (14)

When I = J = 2 and µijt’s are different for given i and j (so that the τij ’s are
different), (11) implies that the LOCF test for treatment-by-center interaction
is asymptotically valid for testing (9) if the design is balanced in the sense that
limnij/n = 1/4 for any i and j. Although in many applications the number
of treatments I = 2, the number of centers J is often more than 2. From
(12) through (14), we know that when either I or J is more than 2, the only
practical situation that a LOCF procedure is valid is when the τ 2

ij are all the
same or, equivalently, the µijt’s are the same for fixed i and j. A result similar
to Theorem 3 for a two-way ANCOVA model can be derived, but it is omitted
since a necessary condition for the validity of the LOCF test is I = J = 2, which
is a limited special case.
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An asymptotically valid test for (9) can be derived based on cell mean esti-

mators ȳij.. and their consistent variance estimators. We now consider the general

two-way ANCOVA model (which includes the ANOVA model as a special case)

in which the mean of yijtk (for patients dropping out after visit t) is

µijt + b′zijtk, (15)

where zijtk is a q-vector of covariates observed for each patient, and b is a q-vector

of unknown parameters. For any i and j, let b̂ij be the least squares estimator

of b based on the data from the patients who received the ith treatment in the

jth center and let uijtk = yijtk − b̂
′

ijzijtk. Then ūij.. = n−1
ij

∑T
t=1

∑nijt

k=1 uijtk is an

unbiased and asymptotically normal estimator of µij with a consistent variance

estimator

V̂ij =
1

nij(nij − 1)

T
∑

t=1

nijt
∑

k=1

(uijtk − ūij..)
2.

Theorem 4. Suppose that, for patients dropping out after visit t, the yijtk’s

are independent with means given by (15) and variances σ2
ijt. Under (9), as

nij → ∞ for all i, j, W →d χ2
(I−1)(J−1), where W = ū′L(L′V̂L)−1L′ū, V̂ =

diag(V̂11, . . . , V̂I1, . . . , V̂1J , . . . , V̂IJ), and ū=(ū11.., . . . , ūI1.., . . . , ū1J.., . . . , ūIJ..)
′.

Consequently, a test of (9) with asymptotic size α rejects H0 if W >

χ2
(I−1)(J−1),α. It is clear that the result in Theorem 4 can be extended to K-way

ANCOVA models.

4. Additive Two-Way ANCOVA

In a multicenter clinical trial, treatment-by-center interaction can sometimes

be ignored, especially when covariates related to centers are introduced into the

model. Hence, in this section we consider an additive two-way ANCOVA model,

which includes the additive two-way ANOVA model as a special case.

Consider the multicenter clinical trial described in Section 3, where the mean

of yijtk for patients dropping out after visit t is µijt +b′zijtk, zijtk is a q-vector of

covariates observed from every patient, and b is a q-vector of unknown parame-

ters. Let µij be given by (8) and assume the additive model

µij = µ + αi + βj , (16)

where µ is an overall mean, αi’s are fixed treatment effects (α1 + · · · + αI = 0),

and βj ’s are fixed center effects (β1 + · · · + βJ = 0). The null hypothesis of no

treatment effect is

H0 : α1 = · · · = αI = 0. (17)
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The LOCF procedure for testing (17) treats µijt as µijT for all t and uses the
following model E(Y) = Xθ + Zb, where θ = (µ, α1, . . . , αI , β1, . . . , βJ )′, Y is
the column vector formed by listing the elements yijtk in the order of i, j, t and
k, Z is the matrix formed by listing the row vectors zijtk in the order of i, j, t
and k, and X is the usual design matrix in a two-way additive ANOVA model.
Define P = I−X(X′X)−X′ and

b̂ = (Z′PZ)−1Z′PY. (18)

The following theorem shows when the LOCF test is asymptotically valid
for testing (17). Its proof is similar to that of Theorem 1 and is omitted. First,
let

MSTR =
(

2
∑

i=1

J
∑

j=1

T
∑

t=1

nijt
∑

k=1

aijtkyijtk

)2
/ 2
∑

i=1

J
∑

j=1

T
∑

t=1

nijt
∑

k=1

a2
ijtk,

where the aijtk’s are the components of the vector that is the difference between
the second and the third rows of (X′X)−X′(I− Z(Z′PZ)−1Z′P), and

MSE =
1

n − (2J + q)

2
∑

i=1

J
∑

j=1

T
∑

t=1

nijt
∑

k=1

[

(yijtk − ȳij..) − b̂
′

(zijtk − z̄ij..)
]2

,

where ȳij.. and z̄ij.. are averages of yijtk and zijtk over indices t and k, respectively.

Theorem 5. Assume that I = 2 and, for patients dropping out after visit t, the
yijtk’s are independent with means µijt + b′zijtk and variance σ2 > 0, and the
µij’s have form given in (16).
(i) The ANCOVA test based on LOCF rejects hypothesis (17) when the ratio

F =MSTR/MSE is larger than F1,n−2J−q,α.
(ii) As nij → ∞, i = 1, 2 and j = 1, . . . , J , MSE →p σ2 + η, where

η = lim

∑2
i=1

∑J
j=1 nijτ

2
ij

∑2
i=1

∑J
j=1 nij

, τ2
ij =

T
∑

t=1

pijt(µijt − µij)
2. (19)

(iii)Under (17), as nij → ∞, i = 1, 2 and j = 1, . . . , J , MSTR →d (σ2 + ζ)χ2
1,

where

ζ = lim

∑2
i=1

∑J
j=1 wijτ

2
ij

∑2
i=1

∑J
j=1 wij

, wij =
T
∑

t=1

nijt
∑

k=1

a2
ijtk. (20)

(iv) For testing hypothesis (17), the LOCF procedure described in (i) is asymptot-
ically valid if and only if

lim

∑2
i=1

∑J
j=1 nijτ

2
ij

∑2
i=1

∑J
j=1 nij

= lim

∑2
i=1

∑J
j=1 wijτ

2
ij

∑2
i=1

∑J
j=1 wij

. (21)
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When the design is balanced, i.e., nij = n0 for all i, j, (21) can be simplified.

Corollary 1. Assume the conditions in Theorem 5 and nij = n0 for all i, j. Let

Z̃ be the (IJn0) × q matrix whose rows are z′ijtk − z̄′i... − z̄′.j.. + z̄′..... Then

wij = (Jn0)
−1 + (z̄1... − z̄2...)

′(Z̃
′

Z̃)−1Sij(Z̃
′

Z̃)−1(z̄1... − z̄2...),

where Sij =
∑T

t=1

∑nijt

k=1 (zijtk − z̄i... − z̄.j.. + z̄....) (zijtk − z̄i... − z̄.j.. + z̄....)
′, and

(21) holds if and only if lim z̄1... = lim z̄2... or lim n−1
0 Sij are the same for all i

and j.

When (21) does not hold, the LOCF procedure described in Theorem 5(i)

is no longer valid for testing (17). To derive a general valid test for (17), for

any fixed i , let b̂i be the estimator of b based only on the data from the

patients who received the ith treatment by a formula similar to (18). Define

uijtk = yijtk − b̂
′

izijtk. Then ūi... = 1
ni

∑J
j=1

∑T
t=1

∑nijt

k=1 uijtk is an unbiased and

asymptotically normal estimator for µ + αi and its variance can be estimated

consistently by

V̂i =
1

ni(ni − 1)

J
∑

j=1

T
∑

t=1

nijt
∑

k=1

(uijtk − ūi...)
2.

Theorem 6. Suppose that, conditional on (nij1, . . . , nijT ), the yijtk’s are inde-

pendent with means µijt + b′zijtk and variances σ2
ijt, and the µij’s have the de-

composition given in (16). Under (17), as nij → ∞ for all i and j, W →d χ2
I−1,

where

W =

I
∑

i=1

1

V̂i

(

ūi... −

∑I
i=1 ūi.../V̂i
∑I

i=1 1/V̂i

)2

.

Consequently, a test of (17) with asymptotic size α rejects H0 if W > χ2
I−1,α.

Inference about αi’s after (17) is rejected can be made using the asymptotic
results based on ūi... and V̂i.

The results in Theorems 5 and 6 can be extended to K-way additive AN-

COVA models with K ≥ 3. We provide a brief discussion here and omit the

details. Under any K-way additive ANCOVA model, the LOCF test for the ef-

fect of a factor with two levels is asymptotically valid if the design is balanced,
and either the covariate averages under the two levels are the same, or the co-

variate variability across different cells (combinations of factors) is constant. In

any case, asymptotically valid tests can be derived along the lines of Theorem 6.

5. Simulation Results

A simulation study was performed to study the finite-sample type I error of

the LOCF test and the proposed test in Theorem 6 in an ANCOVA model. The
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sample sizes and population parameters were chosen to be similar to a phase II

clinical trial in a real application with I = 2 treatments, J = 3 centers, and T = 3

visits. Responses yijtk’s were generated by the following steps. All parameter

values are given in Table 1.

Table 1. Population parameters in the simulation.

i, j pij1, pij2, pij3 µij1, µij2, µij3 σij1, σij2, σij3

1, 1 0.30, 0.20, 0.50 −11656.40,−11668.30,−11804.53 251.2, 249.7, 348.7

1, 2 0.36, 0.36, 0.28 −11682.40,−11660.80,−11758.14 396.1, 131.3, 258.0

1, 3 0.08, 0.33, 0.59 −12012.36,−11650.40,−11434.70 143.8, 143.8, 591.9

2, 1 0.33, 0.07, 0.60 −11705.31,−10473.82,−11905.71 510.4, 486.2, 486.2

2, 2 0.18, 0.27, 0.55 −12160.21,−11500.81,−11637.39 371.7, 807.8, 831.5
2, 3 0.18, 0.18, 0.64 −11767.81,−10762.31,−11720.27 501.4, 311.6, 716.7

1. Generate covariates z1jtk’s as a random sample of size n1 = n11+n12+n13 from

N(846.6, 514.12), and z2jtk’s as a random sample of size n2 = n21 + n22 + n23

from N(845.2, 367.72).

2. For each fixed i and j, generate (nij1, nij2, nij3) from Multinomial (nij, pij1,

pij2, pij3).

3. For each fixed i, j, and t, generate yijtk’s as a random sample of size nijt from

N(µijt + bzijtk, σ
2
ijt), where b = 14.7.

Note that the means of yijtk’s were chosen so that µ1j = µ2j for all j,

which implies that the model is additive with no treatment effect, that is, (17)

is true. The actual type I errors of the LOCF test and the proposed test were

evaluated by simulation with 5,000 runs. Results with different choices of nij ’s

are summarized in Table 2. The results indicate that the proposed test has size

close to the nominal level 5% regardless of whether the sample sizes are balanced

or not. The results also show that the LOCF test has the right size when the

sample sizes are almost balanced, but a wrong size when the sample sizes are

unbalanced. These simulation results generally support our asymptotic results.

Table 2. Type I errors of the LOCF and proposed tests.

Sample Size Type I Error
n11, n12, n13 n21, n22, n23 LOCF Test Proposed Test

30, 33, 36 27, 33, 33 0.0548 0.0544

60, 66, 72 27, 33, 33 0.1118 0.0520

15, 17, 18 27, 33, 33 0.0170 0.0518

30, 33, 36 54, 66, 66 0.0170 0.0496

30, 33, 36 14, 17, 17 0.1078 0.0576
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Appendix

Proof of Theorem 1.

(ii) Let uitk = yitk −b′zitk. The result follows from Lemma 1 of Shao and Zhong

(2003) and the fact that

MSE =
1

n1 + n2 − q − 2

2
∑

i=1

T
∑

t=1

nit
∑

k=1

[

(uitk − ūi..) − (b̂ − b)′(zitk − z̄i..)
]2

=
1

n1 + n2 − q − 2

2
∑

i=1

T
∑

t=1

nit
∑

k=1

(uitk − ūi..)
2 + op(1).

(iii) Note that

(ȳ1.. − b̂
′

z̄1..) − (ȳ2.. − b̂
′

z̄2..) =

T
∑

t=1

n1t
∑

k=1

a1tky1tk −

T
∑

t=1

n2t
∑

k=1

a2tky2tk.

By an argument similar to that of Theorem 1 of Shao and Zhong (2003) and
Theorem 3.12 of Shao (2003), we have

[

(ȳ1.. − b̂
′

z̄1..) − (ȳ2.. − b′z̄2..)
]

/

√

√

√

√

(

2
∑

i=1

T
∑

t=1

nit
∑

k=1

a2
itk

)

σ2 + φ2
1 + φ2

1 →d N(0, 1),

where φ2
i = Var(

∑T
t=1

∑nit

k=1 aitk(µit + b′zitk)). Then the result follows if φ2
i =

τ2
i w2

i holds for i = 1, 2. We only prove the case when i = 1 as an illustration.
Since the covariate value of a patient does not vary with visit, we can rewrite zitk

as zij and aitk as aij , where j = 1, . . . , n1. For t = 1, . . . , T , let X1jt = 1 if and
only if a1j is from a patient who dropped out after the tth visit, and X1jt = 0

otherwise. Clearly, X1j = (X1j1, . . . , X1jT )
i.i.d.
∼ Multinomial(1; p11, . . . , p1T ), j =

1, . . . , n1. Hence

φ2
1 = Var

(

T
∑

t=1

n1
∑

j=1

a1j(µ1t + b′z1j)X1jt

)

= Var
(

n1
∑

j=1

a1j

(

T
∑

t=1

µ1tX1jt +
T
∑

t=1

b′z1jX1jt

))

= Var
(

n1
∑

j=1

a1j

T
∑

t=1

µ1tX1jt +

n1
∑

j=1

a1jb
′z1j

)

= Var
(

n1
∑

j=1

a1j

T
∑

t=1

µ1tX1jt

)
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=

n1
∑

j=1

a2
1jVar

(

T
∑

t=1

µ1tX1jt

)

= τ2
1

n1
∑

j=1

a2
1j = τ2

1

T
∑

t=1

n1s
∑

k=1

a2
1tk = τ2

1 w2
1.
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